Alexander Kanavin, Student No 0242537

Created 26.11.2002, Last saved 26.11.2002
Department of Information Technology, IMPIT 2002
6(9)

SWE 010 758 001 Implementation Plan, v1.0

LTKK

Lappeenranta University of Technology

Department of Information Technology

Implementation Plan
Time Accounting Software

Author:
Alexander Kanavin

Student number: 0242537

E-mail: kanavin@lut.fi

Supervisors:

Yana Selioukova

Email: Yana.Selioukova@lut.fi

Jan Voracek

E-mail: jan.voracek@lut.fi

Lappeenranta, Finland

2002

Software Quality Assurance (SQA) According To SEPA5

1.1. Software Quality [1]

In the most abstract sense the quality is a characteristic or attribute of something. The software program has a great number of characteristics such as cyclomatic complexity, cohesion, number of function points, lines of code and so on. It is possible to divide quality into two subtypes:

· quality of design

· quality of conformance

Quality of design refers refers to the characteristics that designers specify for an item. The grade of materials, tolerances, and performance specifications all contribute to the quality of design. As higher-grade materials are used, tighter tolerances and greater levels of performance are specified, the design quality of a product increases, if the product is manufactured according to specifications.

Quality of conformance is the degree to which the design specifications are followedduring manufacturing. Again, the greater the degree of conformance, the higher is the level of quality of conformance.

In software development, quality of design encompasses requirement, specification and design of the system. Quality of conformance is an issue focused primary on implementation. If the implementation follows the design and the resulting system meets its requirement and performance goals, conformance quality is high.

Quality of design and quality of conformance are only important to software engineers. The quality of software is a wider concept and also includes user satisfaction. The “intuitive” relationship between user satisfactoion and product quality can be expressed as:

User satisfaction = compliant product + good quality + delivery within budget and schedule

Many definitions of software quality have been proposed in the literature. For our purposes, the software quality is the conformance to explicitly stated functional and performance requirements, explicitly documented development standards, and implicit characteristics that are expected of all professionally developed software.

In order to evaluate quality we need to introduce the quality control. Quality control involves inspections, code reviews, and tests used throughout the software process to ensure that the product meets the requirements placed upon it. The quality control is a part of the manufacturing process. Quality control activities may be fully automated, entirely manual, or a combination of automated tools and human interaction. The key requitement of quality control is that the product has defined, measurable specifications to which it is possible to compare the output of each process. Quality control includes a feedback loop to the process that created the work product. The feedback loop is essential to minimize the produced defects.
To guarantee the quality we also nned the quality assurance. Quality assurance consists of the auditing and reporting functions of management. The goal of quality assurance is to provide management with the data necessary to be informed about product quality, thereby gaining insight and confidence that product quality is meeting its goals.

If we want to provide some level of quality, then it is necessary to estimate the cost of quality. The cost of quality includes all costs related to the pursuit of quality or in performing quality-related activities. Cost of quality studies are conducted to provide a baseline for the current cost of quality, identify opportunities for reducing the cost of quality, and provide a normalized basis of comparison (dollars, euros, and so on).

Quality costs may be divided into costs associated with prevention, appraisal, and failure. Prevention costs include

· quality planning

· formal technical reviews

· test equipment

· training

Appraisal costs include activities to gain insight into product condition the “first time

through” each process. Failure costs are those that would disappear if no defect appeared before shipping a product to customers. Failure costs may be subdivided into internal failure costs and external failure costs. Internal failure costs are incurred when we detect a defect in our product prior to shipment. Internal failure costs include

· rework

· repair

· failure mode analysis

External failure costs are associated with defects found after the product has been shipped to the customer.
1.2. Software Reviews [1]

Software reviews are a “filter” for the software engineering process. That is, reviews are applied at various points during software development and serve to uncover errors and defects that can then be removed. Software reviewing “purifies” the software engineering activities such as analysis, design, and coding. Technical work needs reviewing for the same reason that pencils need erasers: To err is human. The second reason we need

technical reviews is that although people are good at catching some of their own errors, large classes of errors escape the originator more easily than they escape anyone else.
A review is a way of using the diversity of a group of people to:

1. Point out needed improvements in the product of a single person or team;

2. Confirm those parts of a product in which improvement is either not desired or not needed;

3. Achieve technical work of more uniform, or at least more predictable, quality than can be achieved without reviews, in order to make technical work more manageable.

Many different types of reviews can be conducted as part of software engineering. An informal meeting around the coffee machine is a form of review, if technical problems are discussed. A formal presentation of software design to an audience of customers, management, and technical staff is also a form of review. But a formal technical review is the most effective filter from a quality assurance standpoint. A formal technical review is a software quality assurance activity performed by software engineers (and others). The objectives of the FTR are (1) to uncover errors in function, logic, or implementation for any representation of the software; (2) to verify that the software under review meets its requirements; (3) to ensure that the software has been represented according to predefined standards; (4) to achieve software that is developed in uniform manner; and (5) to make projects more manageable.
1.3. Software Testing Strategies [1]

A strategy for software testing integrates software test case design methods into a well-planned series of steps that result in the successful construction of software. The strategy provides a road map that describes the steps to be conducted as part of testing, when these steps are planned and then undertaken, and how much effort, time, and resources will be required. Therefore, any testing strategy must incorporate test planning, test case design, test execution, and resultant data collection and evaluation.

Testing is a set of activities that can be planned in advance and conducted systematically. For this reason a template for software testing – a set of steps into which we can place specific test case design techniques and testing methods – should be defined for the software process.

All software-testing strategies provide the software developer with a template for testing and all have the following generic characteristics:

· Testing begins at the component level and works “outward” toward the integration of the entire computer-based system.

· Different testing techniques are appropriate at different points in time.

· Testing is conducted by the developer of the software and (for large projects) and independent test group.

· Testing and debugging are different activities, but debugging must be accommodated in any testing strategy.

A strategy for software testing must accommodate low-level tests that are necessary to verify that a small source code segment has been correctly implemented as well as highlevel tests that validate major system functions against customer requirements.

Software testing is one element of a broader topic that is often referred to as verification and validation (V&V). Verification refers to the set of activities that ensure that software correctly implements a specific function. Validation refers to a different set of activities that ensure that the software that has been built is traceable to customer requirements.

A typical strategy for software testing begins with the unit testing of each unit (i.e., component) of the software as implemented in source code. Testing progresses by moving to integration testing, where the focus is on design and the construction of the software architecture. After that, we encounter validation testing, where requirements established as part of software requirements analysis are validated against the software that has been constructed. Finally, we arrive at system testing, where the software and other system elements are tested as a whole. We broaden the scope of testing with each turn.
2.4. SQA In This Project [2,3]

We can base the quality measurement of the software on the requirements and constraints, given, respectively, in the Requiremenrs document[3] and the Project Plan[2].

We can formulate the following quality critera, based on that:

1) Easy and understandable human/machine interaction;

2) Timeliness of preparing reports and code

3) The look and functionality of the software.

Quality control is different for each quality criteria. Understandable human/machine interaction is verfied by scenario descriptions of software (see Appendix 4 of Requirements documentation). Timeliness of preparing reports and code is controlled by providing the reports and parts of software to customer at every deadline of the project. The look of software can be checked in the Requirement documentations of the project. The functionality of software can be checked by the use of test cases (see Appendix 4 of Requirements document for test scenarios).
System testing will not be used because our software is very simple and using full testing scenario is excessive for the project. The Unit test will be provided by use Test cases (see Appendix 4 of Requirements document for test scenarios).

Validation testing will include testing of the following criteria:

o All UI requirements (see Requirements document),

o and SF1-4 requirements (see also Requirements document).

At this step the project constraints will be checked also.
2. Software Configuration Management

2.1. Software Configuration Management According to SEPA5 [1]

Software configuration management (SCM) is a set of activities designed to control changes by identifying the components that are likely to change, establishing relationships between them, defining the mechanism for managing different versions of these components, controlling the changes and auditing and reporting on the changes made.

Software configuration management (SCM) is an umbrella activity that is applied throughout the software process. Because changes can occur at any time, SCM activities are developed to (1) identify changes, (2) control changes, (2) ensure that change is being properly implemented, and (4) report changes to those who may have an interest.

The output of the software process is information that may be divided into three broad categories: (1) computer programs (both source level and executable forms); (2) documents that describe the computer programs (targeted at both technical practitioners and users), and (3) data (contained within the program or external to it). The items that comprise all information produced as part of the software process are collectively called a software configuration.

As the software process progresses, the number of software configuration items (SCIs) grows rapidly. A System Specification spawns a Software Project Plan and Software Requirement Specification. These in turn spawned other SCIs. An SCI could be considered to be a single section of a large specification or one test case in a large suite of test. More realistically, an SCI is a document, a entire suite of test cases, or a named program component (e.g., a C++ function or an Ada package). SCIs are organized to form configuration objects.

Another variable enters the process – change. Change is a fact of life in software development. Customers want to modify requirements. Developers want to modify the technical approach. Managers want to modify the project strategy. A baseline is used to control change without seriously impeding justifiable change. A baseline is a specification or product that has been formally reviewed and agreed upon, that thereafter serves as the basis for further development, and that can be changed only through formal change control procedures. The CVS (Concurrent Version System), Microsoft SourceSafe and other program utilities provide the baseline principle.

In every project change control must be provided. For a large software engineering project, uncontrolled change rapidly leads to chaos. For such projects, change control combines human procedures and automated tools to provide a mechanism for the control of change.
2.2. Software Configuration Items in This Project

This project has three types of SCIs:

· Project documents

· Test cases

· Program components

The project documents consist of Project Plan, Requirements Documentation, Implementation Plan, and Project Binder. Test scenarios are includued in Appendix 1 of Requirements document and are presented as one module. Program components are Excel Visual Basic for Application (VBA) functions. All functions of software can be presented as one SCI module, because they are relatively simple and the project has only one implementation step.
2.3. Change Control in This Project

Because the the time accounting software project is very small software we are not using the baseline concept or the version control system. The change control procedure, initiated by the customer is outlined below.

1. Need for change is recognized

2. Change request from customer arrives
3. Developer evaluates

4. Change report is generated

5. Change control authority makes a decision, if the request is denied, customer is informed, and the procudure stops, otherwise it continues
6. Request is queued for action

7. Individuals are assigned to configuration objects

8. The change is made
9. The change is reviewed and audited
10. The current version of software is rebuild
11. Quality assurance and testing activities are performed
12. The change to all configuration items is reviewed (audited)
13. The new version is distributed
3. Software Architecture

3.1. Purpose of Software Architectural Design According to SEPA5 [1]

Architectural design represents the structure of data and program components that

are required to build a computer-based system. It considers the architectural style that the system will take, the structure and properties of the components that constitute the system, and the interrelationships that occur among all architectural components of a system [1].

An architecture is the set of significant decisions about the organization of a software system, the selection of the structural elements and their interfaces by which the system is composed, together with their behavior as specified in the collaborations among those elements, the composition of these structural and behavioral elements into progressively larger subsystems, and the architectural style that guides this organization – these elements and their interfaces, their collaborations, and their composition [5].

Software architecture is represented using the following concepts:
1. Component: An object with independent existence, e.g., a module, process, procedure, or variable.
2. Interface: A typed object that is a logical point of interaction between a component and its environment.

3. Connector: A typed object relating interface points, components, or both.

4. Configuration: A collection of constraints that wire objects into a specific architecture.

5. Mapping: A relation between the vocabularies and the formulas of an abstract and a concrete architecture. The formula mapping is required because the two architectures can be written in different styles.

6. Architectural style: A style consists of a vocabulary of design elements, a set of well-formedness constraints that mush be satisfied by any architecture written in the style, and a semantic interpretation of the connectors [6].

The software that is built for computer-based systems exhibits one of many architectural styles. Although millions of computer-based systems have been created over the past 50 years, the vast majority can be categorized into one of a relatively small number of architectural styles:

· Data-centered architectures

· Data-flow architectures

· Call and return architectures

· Object-oriented architectures
· Layered architectures

For detailed information on these styles refer to Chapter 14: Architectural Design of [1].
Logical View on Architecture In This Project

For this project the data-centered architecture was selected. The software includes a database, and most of the modules perfrom operations on data,. The structure of Excel VBA also suggests the data-centered architecture
The central resource is an Excel page with data. Three components access this page

· :

· Program components for changing the table structure
· Program components for changing the table data
· Program component for creating and deleting the table
3.2. Development View on Architecture in This Project

The program functions can be separated into three categories:

· Macros assigned to the button on Excel toolbox for creating a new table

· Functions with no dialog window interface that change data and structure of the table

· Functions with dialog window interface that invoke the previous type of functions to change data and structure of thetable.

The standard Excel components are also included to the development view of software. These components provide data manipulation interface to program functions and provide standard Excel interface possibilities to the end-user.
4. Acknowledgements

Thanks to Jan Voracek for his very interesting lectures on Software Engineering.

Also I would like to thank Yana Selioukova for her help with this project and the links and materials provided on the course webpage.

Special thanks go to Viacheslav Izosimov who answered many questions I had about various sections of this document.
5. Total Time Used for Different Course Activities so Far

Apart from the lectures and excercies that take 4 hours every week, I have also spent

2 hours preparing for the excercises on 24.09, 5 hours writing the project plan, and a total of 10 hours writing the Requirements document (including all the reading, UI prototypes etc.). I have also spent about 6 hours writing the Implementation Plan, and 7 hours preparing the presentation on the topic of Extreme Programming.
References

1. Pressman, R. S.: Software Engineering, A Practitioner's Approach (European

adaptation, fifth edition). McGraw Hill, 2000.

2. Project plan of Software Engineering project by Alexander Kanavin.

3. Requirements documentation of Software Engineering project by Alexander Kanavin.
4. Software Engineering Homepage
http://www.it.lut.fi/kurssit/02-03/010752000/projects.html

[cited 30.10.2002]

5. The UML Modeling Language User Guide, Addison-Wesley, 1999

6. Moriconi, Mark & Qian, Xiaolei, Correctness and Composition of Software

Architectures. Proceedings of the Second ACM SIGSOFT Symposium on

Foundations of Software Engineering, ACM, 1994.

7. Standard Implementation plan template (available from [4])

8. Software engineering classics : best practices for building great software and great

software teams. Redmond (WA) : Microsoft Press, 1998

9. Excel Tutorials http://lacher.com/toc.htm
10. VBA Tutor Lessons http://www.vbatutor.com/vbatutor.htm
11. MSDN Online Search http://search.microsoft.com/default.asp?siteid=us/dev
Implementation Plan Template © un 21.2.2001
0242537KaA_IP

