LTKK

Lappeenranta University of Technology

Department of Information Technology

Artificial Intelligence Project
Implementing a “Corners” game

Author:
Alexander Kanavin

Student number: 0242537

E-mail: kanavin@lut.fi

Teacher:

Jan Voracek

E-mail: jan.voracek@lut.fi

Lappeenranta, Finland

2002
1. Introduction

The goal of this project was to create a game for mobile phone named "Corners". This is a game between a computer player and a human, where each side makes moves in turns, like in chess or checkers. The AI component in the game is responsible for the computer playing.

2. The game rules

The game is played by 2 players on a square board of 8 by 8 size. At the beginning of the game there are 12 red and 12 blue pieces located in the opposite corners of the boards as shown on the figure. The players move their pieces in turns and the goal of the game is to completely move all the pieces to the opposite corner. The player who manages to do it first, wins.

[image: image1.png]

The pieces are moved according to the following rules:

1) It is possible to move a piece to one of the four adjacent squares, if it is free.

[image: image2.png]

[image: image3.png]

2) It is possible for the piece to "jump" over an adjacent piece (the colour does not matter) to the square behind it, and if it's possible to make a similar jump from that position, that can be done too. That way, a jump chain can be created for the move and a piece can move quite a long distance (the second picture illustrates this).

[image: image4.png]B DefaultColorPhone IS S|

@ 4

onr 5kt | o

0 G

3. The human strategy for playing

I'm not aware if the game has been studied in the literature. However it seems that a good strategy is to construct reusable jump chains and not to leave individual pieces far behind all the rest.

4. The programming environment.

The game was developed using Java language for the Sun MIDP environment, which is basically Sun's Java virtual machine and a library for the mobile devices. This environment is heavily restricted: the typical heap size is about 100 kilobyes, and the typical processor speed is about 20 to 30 Mhz. Thus, the AI engine responsible for making a move has to be as simple as possible.

[image: image5.png]

5. How a game position is evaluated (heuristics).

For every piece on board a Manhattan distance from the target corner is calculated. Then these distances are summed up. The smaller the number, the better our position. Note that we could also evaluate moves instead of positions (how much a move improves the sutuation for us and makes it worse for the opponent) but that is more difficult, because it involves evaluating possible jump paths.

6. The approach with building a tree

When creating the AI module, I first tried the approach that builds a moves tree and searches for the best move using the minimax strategy. However, it was quickly discovered, that this approach isn't effective in terms of memory usage and time to make a move. Basically, it eats up all of the heap even for a tree with small depth, like 2. So this approach was ultimately discarded. The source code, however, is presented in the first appendix.

7. The simpler approach with heuristic search

Here, we just calculate the heuristic function (section 5) for all possible moves, and choose the best one. This approach turned out to be quite effective: fast and not memory-greedy. In fact, when I played against the computer, I often lost by two or three moves. The source code for this strategy is presented in the second appendix.

8. Conclusion

In this project I learned a lot about how computers play games. I've also implemented two of the possible playing strategies, and was able to see that even though tree-based search is more powerful, it is also much less effective in the real world. I also had some fun playing the game itself against the computer - which I "taught" how to play.

9. References

1. Sun Java MIDP environment: http://java.sun.com

2. AI lectures on searching and game playing:

http://www.it.lut.fi/kurssit/02-03/010595002/lectures2.html
Appendix 1. Tree-based approach source

void buildTree(Move move, int depth)

 {

short nFinished=0;

short avDistance=2000;

if (move.nextMoves.size() > 0) {

 for (Enumeration e = move.nextMoves.elements(); e.hasMoreElements();)

buildTree((Move)e.nextElement(), depth - 1);

} else {

 for (short i = 0; i < xsize; i++)

 for (short j = 0; j < ysize; j++)

 if (fields[i][j] != EMPTY && fields[i][j] != move.whoseMove)

for (short i1 = 0; i1 < xsize; i1++)

 for (short j1 = 0; j1 < ysize; j1++)

if (pathExists(i,j,i1,j1)) {

 fields[i1][j1] = fields[i][j];

 fields[i][j] = EMPTY;

 Move newMove = new Move();

 newMove.from = coords[i][j]; newMove.to = coords[i1][j1];

 newMove.whoseMove = fields[i1][j1];

/*

 newMove.prevMove = move;*/

 newMove.nextMoves = new Vector();

 if (depth>0) {

buildTree(newMove,depth - 1);

 move.nextMoves.addElement(newMove);

 } else {

if (nFinished < getNFinished(fields, newMove.whoseMove)) {

 move.nextMoves.removeAllElements();

 move.nextMoves.addElement(newMove);

}

if (nFinished == getNFinished(fields, newMove.whoseMove)) {

 if (avDistance > getAvDistance(fields, newMove.whoseMove)) {

move.nextMoves.removeAllElements();

 move.nextMoves.addElement(newMove);

 }

 if (avDistance == getAvDistance(fields, newMove.whoseMove)) {

 move.nextMoves.addElement(newMove);

 }

}

 }

 fields[i][j] = fields[i1][j1];

 fields[i1][j1] = EMPTY;

 }

}

 }

 short getAvDistance(short [][] fields, short who)

 {

short avDistance = 0;

for (int i = 0; i < xsize; i++)

 for (int j = 0; j < ysize; j++)

if (fields[i][j] == who)

 avDistance+=length(0,ysize,i,j);

return avDistance;

 }

 short getNFinished(short [][] fields, short who)

 {

int i,j;

short nFinished = 0;

if (who == PLAYER)

 for (i = xsize - 3; i < xsize; i++)

for (j = 0; j < 4; j++)

 if (fields[i][j] == PLAYER)

nFinished++;

else

 for (i = 0; i < 3; i++)

for (j = ysize - 4; j < ysize; j++)

 if (fields[i][j] == COMPUTER)

nFinished++;

return nFinished;

 }

 Move findMove(Vector moves, int x1,int y1,int x2,int y2)

 {

Move move;

if (moves != null)

 for (Enumeration e = moves.elements(); e.hasMoreElements();) {

move = (Move)e.nextElement();

if (move.from.x == x1 && move.to.x == x2 && move.from.y == y1 && move.to.y == y2)

 return move;

 }

return null;

 }

 void makeMove()

 {

Move bestMove,curMove;

bestMove = (Move) move.nextMoves.elementAt(0);

for (Enumeration e = move.nextMoves.elements(); e.hasMoreElements();) {

curMove = (Move)e.nextElement();

if (firstMoveBetter(curMove,bestMove)) {

 bestMove = curMove;

}

}

fields[bestMove.to.x][bestMove.to.y] = fields[bestMove.from.x][bestMove.from.y];

fields[bestMove.from.x][bestMove.from.y] = EMPTY;

move = bestMove;

 }

 void makeRatings(Move move)

 {

Move worstMove,bestMove,curMove;

if (move.whoseMove == PLAYER) {

 if (move.nextMoves.size() != 0) {

for (Enumeration e = move.nextMoves.elements(); e.hasMoreElements();) {

 curMove = (Move)e.nextElement();

 fields[curMove.to.x][curMove.to.y] = fields[curMove.from.x][curMove.from.y];

 fields[curMove.from.x][curMove.from.y] = EMPTY;

 makeRatings(curMove);

 fields[curMove.from.x][curMove.from.y] = fields[curMove.to.x][curMove.to.y];

 fields[curMove.to.x][curMove.to.y] = EMPTY;

}

worstMove = (Move) move.nextMoves.elementAt(0);

for (Enumeration e = move.nextMoves.elements(); e.hasMoreElements();) {

 curMove = (Move) e.nextElement();

 if (firstMoveBetter(worstMove,curMove))

worstMove = curMove;

}

move.rating = worstMove.rating;

 }

} else {

 if (move.nextMoves.size() != 0 && ((Move)move.nextMoves.elementAt(0)).rating != null) {

for (Enumeration e = move.nextMoves.elements(); e.hasMoreElements();) {

 curMove = (Move)e.nextElement();

 fields[curMove.to.x][curMove.to.y] = fields[curMove.from.x][curMove.from.y];

 fields[curMove.from.x][curMove.from.y] = EMPTY;

 makeRatings(curMove);

 fields[curMove.from.x][curMove.from.y] = fields[curMove.to.x][curMove.to.y];

 fields[curMove.to.x][curMove.to.y] = EMPTY;

}

bestMove = (Move) move.nextMoves.elementAt(0);

for (Enumeration e = move.nextMoves.elements(); e.hasMoreElements();) {

 curMove = (Move) e.nextElement();

 if (firstMoveBetter(curMove,bestMove))

bestMove = curMove;

}

move.rating = bestMove.rating;

 } else {

move.rating = new Rating(getNFinished(fields,COMPUTER),getAvDistance(fields,COMPUTER));

 }

}

 }

 boolean firstMoveBetter(Move first, Move second)

 {

if (first.rating.nFinished > second.rating.nFinished)

return true;

if (first.rating.nFinished == second.rating.nFinished)

 if (first.rating.avDistance < second.rating.avDistance)

return true;

return false;

 }

/* square root is not available */

 int length(int x1,int y1,int x2,int y2)

 {

return (Math.abs(x1-x2)*Math.abs(x1-x2) + Math.abs(y1-y2)*Math.abs(y1-y2));

 }

Appendix 2. Heuristic search

void makeMove()

 {

Coord bestFrom = new Coord(-1,-1);

Coord bestTo = new Coord(-1,-1);

Coord destTo = new Coord(-1,-1);

Coord destFrom = new Coord(-1,-1);

int score,bscore= -100;

int i,j,i1,j1;

for (i = 0; i < xsize; i++) {

 for (j = 0; j < ysize; j++) {

if (fields[i][j] == COMPUTER) {

 for (i1 = 0; i1 < xsize; i1++) {

for (j1 = 0; j1 < ysize; j1++) {

 if (pathExists(i,j,i1,j1)) {

destTo = getBestDest(destTo,i1,j1);

destFrom = getBestDest(destFrom,i,j);

if (length (i,j,i1,j1) > 0 && destFrom.x != -1 &&

 (i >= 3 || j < ysize - 4 || (i1 <= i && j1 >= j))) {

 score = getScore(i,j,i1,j1,destTo,destFrom);

 if (score > bscore) {

bestFrom.x = i; bestFrom.y = j;

bestTo.x = i1; bestTo.y = j1;

bscore = score;

 }

}

 }

}

 }

}

 }

}

if (bestFrom.x >=0) {

 fields[bestFrom.x][bestFrom.y] = EMPTY;

 fields[bestTo.x][bestTo.y] = COMPUTER;

}

 }

 Coord getBestDest(Coord dest, int x, int y)

 {

dest.x = -1;

dest.y = -1;

int i,j;

for (i = 0; i < Math.min(x+1,3); i++)

 for (j = Math.max(ysize -4,y); j < ysize ; j++)

if (fields[i][j] == EMPTY && (dest.x == -1 || length (x,y,i,j) < length(x,y,dest.x,dest.y))) {

 dest.x = i; dest.y =j;

}

if (dest.x != -1)

return dest;

for (i = 0; i < Math.min(x+1,3); i++)

 for (j = Math.max(ysize -4,y); j < ysize ; j++)

if (fields[i][j] == PLAYER && (dest.x == -1 || length (x,y,i,j) < length(x,y,dest.x,dest.y))) {

 dest.x = i; dest.y =j;

}

return dest;

 }

 int getScore(int x1, int y1, int x2, int y2, Coord destTo, Coord destFrom)

 {

if (x1 >=3 || y1 < ysize - 4)

return (length(x1,y1,destFrom.x,destFrom.y) - length(x2,y2,destTo.x,destTo.y));

else

return (length(x1,y1,x2,y2));

 }

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

[image: image6.png]

[image: image7.png]2ME Wireless Toolki
Fle Edt Profct Hep

| 92 newproject...| 85 Open Proect . || 9, getings .| § guid | 9 Run || B3 clear cansae
| Device:[petauttColorPhone -
[roject “shar Losded

xecution conpleted successtully

102750 bytecodes executzd

ba thread suitches

25 classes in the systen (including systen classes)
bss ananic objects allocsted (40240 bytes)

b arbage collections (27852 bytes collected)

otal heap size SOD00D bytes (currently 475324 byces free)

shar [-[O[x]

[image: image8.png]

_1103947716

_1103948012

_1103947618

