PAGE

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

Department of Information Technology

010607000 Communications Software and Architecture

PRACTICAL ASSIGNMENT

SMARTHOME

Group

Alex Kanavin #0242537 Tite kanavin@lut.fi

Oleg Daviduyk #0242498 Tite daviduyk@lut.fi

TABLE OF CONTENTS

21
Introduction

2
Requirement Specification And Analysis
2
2.1
Textual Description of The System Behavior
2
2.2
System Components and Interaction
3
2.3
Use Cases
4
3
Design Specification
7
3.1
SDL Diagrams
7
3.1.1
System Diagrams
7
3.1.2
Block Diagrams
8
3.1.3
Process Diagrams
10
3.2
Message / Data Definition
17
3.2.1
Messages
18
3.2.2
ROOM1-3 internal variables
18
3.2.3
TERMINAL internal variables.
18
4
Testing
19
4.1
Semantic / Syntactic Analysis
19
4.2
Bit-State Validation
20
4.3
MSC verification
21
5
Feedback
22
References
23

appendix 1. asn.1 file
Introduction

In this project a simple intelligent house control system is developed and described. This system controls the light in the house and defenses the home with a security feature. The project has studying purposes so the range of the functional possibilities of the system is quite narrow. The system consists of a set of sensors and a terminal. The sensors are set in each room and can control the lightning and detect movements (support security). There is a manual light-switching feature also.

We used the Telelogic development environment to build the system. It can allow you to deal with such tasks as SDL diagram modeling, process modeling and many others. On the last step the Microsoft Validator and Simulator was used to finally trace our system and built the executable file.
1 Requirement Specification And Analysis

1.1 Textual Description of The System Behavior

The SmartHome system is purposed to control and operate with the electricity devices in a house. So the system is equipped with a set of sensors and has a terminal. The terminal is used to manually change the status of the security system and control the light in the rooms. In our project the system operate with three rooms, in each room can be installed an electronic device (such a device exists - it’s a TV).

The system works in two states: light control and security guarding. The latter is used to protect a house against a burglary. In the guarding state the system needs a password to switch off the alarm. There are three attempts to enter correct password for user, otherwise the system sends an alarm signal to a nearest policy station. The alarm signal is used also in the case of housebreaking, when a sensor detects a movement in a room.
All the processes that take place in the system are handled parallel to avoid the problems with security and response on the actions of the user.

The system allows changing the password, even when the security system is turned on. Then the manual control feature exists, so the automatic system of light-switching can be disabled by simple pushing of a button in the room.

The AllOff feature is developed to ease the switching all of the devices in the flat include light and connected appliances (like TV).

The light is controlled both manually and with a timer. The default time is 600 seconds, but it can be changed for each room via terminal interface. The timer of security system is set to 60 seconds; in this period the alarm will start.

The system seems to be very reliable and simple to implement.

1.2 System Components and Interaction

The interaction is presented with two parts – the human and the terminal. The terminal connected with the sensors with channels. There’s a special channel for the alarming, which is connected directly with the police stations. In our project we deal with the three sensors in three rooms. They send signals to the terminal when an action was detected (movement) or when just to control the light.

Figure 1. the Top level scheme of the components

1.3 Use Cases

Please refer to the MSC comments for explanations.

[image: image1.wmf]Environment

ROOM1

process

ROOM1

TERMINAL

process

TERMINAL

This diagram illustrates the case when the home owner

leaves the home and switches the security on.

Then the thief comes in and the alarm is triggered on.

WaitForSecurity

Ready

Ready

Ready

Ready

Ready

MSC

AlarmSetOff

ThiefDelay(1000.000)

Room1Sensor

Security1On

Room1SensorOut

SecurityDelay(60.0000)

SecurityOn

AskPassword

Password

(

'1234'

)

Success

Alarm

 [image: image2.wmf]Environment

TERMINAL

process

TERMINAL

ROOM1

process

ROOM1

This use case illustrates the situation

when first, the movement sensor

is triggered, but because the light control

is set to manual position, the light are not

automatically switched on or off.

The the light switch is triggered, and the lights

are switched on.

Ready

Ready

Ready

Ready

WaitForSecurity

Ready

Ready

Room1Lights

(

9

)

Room1LightSwitch

Room1Lights

(

0

)

Light1Delay(600.0000)

Security1Off

Room1SensorOut

Room1Sensor

2 Design Specification

Please read the comments in the diagrams as they contain all the explanations.

2.1 SDL Diagrams

2.1.1 System Diagrams

[image: image3.wmf]use MYDATATYPES;

system SmartHome

SIGNAL

SecurityOn,SecurityOff, Password(NumericString), SetPassword, AllOff,

Room1Sensor, Room2Sensor, Room3Sensor, Room1LightSwitch,

Room2LightSwitch, Room3LightSwitch, Room1Dim(DimType), Room2Dim(DimType),

Room3Dim(DimType), TVOn, TVOff, SetLightTimeout, NewTimeout(Duration), Cancel,

AskPassword, Success, Failure(ReasonType),AskNew, Alarm, Room1Lights(DimType),

Room2Lights(DimType),Room3Lights(DimType),CurrentTimeout(Duration),Security1On,

Security1Off,Security2On,Security2Off,Security3On, Security3Off,Room1SensorOut,

Room2SensorOut,Room3SensorOut;

TERMINAL

ROOMS

The system consists of two blocks, ROOMS and TERMINAL

ROOMS tell the TERMINAL when the movement sensors go off

(because the TERMINAL is responsible for turning the Alarm on).

The ROOMS also expect from the TERMANAL the information on

whether or not the Security is on (because they are responsible

for the automatic switching on of the lights).

C2

Room1Lights

Room1Sensor,

Room1LightSwitch,

Room1Dim,

TVOn,TVOff

T1

Room1SensorOut

Security1On,Security1Off

C3

Room2Lights

Room2Sensor,

Room2LightSwitch,

Room2Dim

T2

Room2SensorOut

Security2On,

Security2Off

C4

Room3Lights

Room3Sensor,

Room3LightSwitch,

Room3Dim

T3

Room3SensorOut

Security3On,

Security3Off

2.1.2 Block Diagrams

[image: image4.wmf]block ROOMS

ROOM1(1,1)

ROOM2(1,1)

ROOM3(1,1)

The ROOMS block consists of three ROOM processes.

Each of the rooms behaves independently of the others.

The channels C1, C2, C3 are used to communicate

with the environment, T1, T2, T3 are used to communicate

with the TERMINAL.

C2

T1

C3

T2

C4

T3

R1

Room1Lights

Room1Sensor,

Room1LightSwitch,

Room1Dim,

TVOn,TVOff

R4

Room1SensorOut

Security1On,

Security1Off

R2

Room2Lights

Room2Sensor,

Room2LightSwitch,

Room2Dim

R5

Room2SensorOut

Security2On,

Security2Off

R3

Room3Lights

Room3Sensor,

Room3LightSwitch,

Room3Dim

R6

Room3SensorOut

Security3On,

Security3Off

[image: image5.wmf]block TERMINAL

TERMINAL(1,1)

For implementing the terminal functionality,

we use only one process named TERMINAL.

T1

C112

T2

T3

C1

R7

Security1On,Security1Off

Room1SensorOut

R10

Alarm

R8

Security2On,Security2Off

Room2SensorOut

R9

Security3On,Security3Off

Room3SensorOut

R11

AskPassword,

Success,

AskNew,

Failure,

Room1Lights,

Room2Lights,

Room3Lights,

CurrentTimeout

SecurityOn,

SecurityOff,

Password,

SetPassword,

AllOff,

SetLightTimeout,

NewTimeout,

Cancel

2.1.3 Process Diagrams

[image: image6.wmf]DCL

dimlevel DimType,

manual Integer;

dimlevel:=9

manual:=1

Ready

Room1Sensor

Room1SensorOut

WaitForSecurity

Security1On

Security1Off

manual=0

Room1Lights(dimlevel)

Room1LightSwitch

manual=0

manual:=1

Room1Lights(0)

manual:=0

Room1Lights(dimlevel)

Room1Dim(dimlevel)

TVOn

manual:=1

Room1Lights(0)

TVOff

manual:=0

Room1Lights(dimlevel)

For Room processes

we use only one process diagram.

At the start, we set the default

values for the dim level and manual

light operation (by default, light is

switched off and has to be switched on

manually).

If a movement sensor is triggered, we ask the

TERMINAL process for the current state of

security. If the security is switched on or if the lights

are operated manually at the moment, we do nothing.

If the light are operated automatically we switch them on.

The diagrams for the second and third room

look exactly the same, except they do not

include the TVOn and TVOff signals, and the signal

names are slightly different (Room2Sensor, etc.)

false

true

true

false

[image: image7.wmf]process TERMINAL

password:='1234',

timeout:=600,

security:=0,

seconpassword:=0,

secoffpassword:=0,

setpassword:=0

Ready

The terminal

process starts

with initialisation

of its internal variables

(default password,

default timeout, default security

state, and state variables for

setting the password and switching

the security on and off).

[image: image8.wmf]process TERMINAL

Ready

Room1SensorOut

security=1

Security1On

Alarm

Ready

Security1Off

set(now+timeout,Light1Delay);

Ready

Room2SensorOut

security=1

Security2On

Alarm

Ready

Security2Off

set(now+timeout,Light2Delay);

Ready

Room3SensorOut

security=1

Security3On

Alarm

Ready

Security3Off

set(now+timeout,Light3Delay);

These three almost identical charts show how the TERMINAL repsonds to the movement sensors.

If we have security switched on, we tell the ROOM that it is on (so that it does not switch the lights

on) and set off the Alarm. If we had it off, we also tell this to the room (so that it can decide whether

to switch on the light or not), and start a timer, at the end of which (if there were no further

sensor messages) we switch off the lights (this action will be shown in one of the next diagrams).

true

false

true

false

true

false

[image: image9.wmf]process TERMINAL

Ready

SecurityOn

seconpassword:=1

AskPassword

Ready

Ready

SecurityOff

secoffpassword:=1

AskPassword

Ready

Ready

SetPassword

setpassword:=1

AskPassword

Ready

This is quite trivial - when someone wants to change the password, or

play with the security, we ask him for the password.

[image: image10.wmf]process TERMINAL

Ready

Password(tmppassword)

setpassword=2

length(tmppassword)<4

length(tmppassword)>8

Failure(tooLong)

setpassword:=0

Ready

setpassword:=3

AskNew

tmppassword2:=tmppassword

Ready

Failure(tooShort)

setpassword=3

tmppassword2=tmppassword

setpassword:=0,

password:=tmppassword

Success

Ready

Failure(invalid)

setpassword:=0

setpassword=1

seconpassword=1

secoffpassword>0

Ready

password=tmppassword

Failure(invalid)

secoffpassword:=secoffpassword+1

secoffpassword=4

AskPassword

Ready

Alarm

secoffpassword:=0

Success

security:=0

Ready

password=tmppassword

Failure(invalid)

seconpassword:=0

Ready

seconpassword:=0

Success

set(60, SecurityDelay);

password=tmppassword

Failure(invalid)

setpassword:=0

Ready

setpassword:=2

AskNew

This looks like a real mess, but we couldn't figure out a way to make it simpler

(except splitting into subdiagrams). The reason for that is that when a user supplies

 a password to us, there is no way to distinguish from the signal alone, what was

the reason for it. So we have to keep, check and update lots of internal state variables.

Anyway, this diagram handles all the cases: switching on the security, switching off

the security (with threee attempts before the alarm goes off), and changing the password

(the new password has to be supplied twice).

true

false

true

false

true

false

true

true

false

false

false

false

false

true

false

false

true

true

true

false

true

true

false

true

[image: image11.wmf]process TERMINAL

Ready

Cancel

seconpassword:=0,

secoffpassword:=0,

setpassword:=0,

settimeout:=0

Ready

Ready

AllOff

Room1Lights(0)

Room2Lights(0)

Room3Lights(0)

Ready

Two trivial cases - cancelling

the action resets the internal state variables,

and switching everything off, well, does just that.

[image: image12.wmf]process TERMINAL

Ready

SetLightTimeout

CurrentTimeout(timeout)

settimeout:=1

Ready

Ready

NewTimeout(tmptimeout)

settimeout=1

tmptimeout>0

Success

settimeout:=0,

timeout:=tmptimeout

Ready

Failure(invalid)

settimeout:=0

Ready

The logic for changing the light

timeout is presented here. Note

the use of the temporary variable,

and the state variable that is used to check

if the SetLightTimeout signal arrived before

the NewTimeout signal.

true

true

false

false

[image: image13.wmf]process TERMINAL

Ready

Light1Delay

Room1Lights(0)

Ready

Ready

Light2Delay

Room2Lights(0)

Ready

*

Light3Delay

Room3Lights(0)

Ready

*

SecurityDelay

security:=1

Ready

The actions on timers timouts is quite

trivial - we switch off the light in the corresponding

room if there was no movement there for a certain

period of time and switch on the security 60 seconds

after the user has successfully supplied the password.

2.2 Message / Data Definition

The messages and parameters that the system uses to communicate with the environment were described in detail in the problem description, so it would make little sense to repeat (“copy-paste”) them here.

The description of the internal messages and variables follows.

2.2.1 Messages

2.2.1.1 Room1SensorOut, Room2SensorOut, Room3SensorOut

These messages are sent by each of the rooms to the TERMINAL to indicate that the movement sensor has been triggered. The TERMINAL uses that either to set off the Alarm if the security is on, or to reset and start a timer for the automatic switch-off of the lights in the corresponding room. The TERMINAL also sends the security state to the corresponding room immediately after receiving this signal.

2.2.1.2 Security1On, Security1Off, Security2On, Security2Off, Security3On, Security3Off.

The ROOMS expect to receive these signals immediately after they have sent the sensor signals to the terminal (see above). The use them to make a decision on whether or not the lights should be switched on.

2.2.2 ROOM1-3 internal variables

2.2.2.1 DimLevel

This variable keeps the dim level for the room and is changed by the RoomNDim signal

2.2.2.2 Manual

This variable keeps the state of the light switch – if it is 1, the lights are off and can only be switched on by pressing the switch (RoomNLightSwitch). If it is 0, the lights can be both on and off and are controlled by the movement sensor.

2.2.3 TERMINAL internal variables.

2.2.3.1 timer Light1Delay, timer Light2Delay,timer Light3Delay

These timers are used to delay the switching off the lights by a certain period of time (defined by the timeout variable).

2.2.3.2 timer SecurityDelay

This timer is used to postpone the switching on of the security facilities by one minute.

2.2.3.3 timeout Duration

This variable keeps the amount of time before switching off the lights after no movement has been detected for this amount of time.

2.2.3.4 password NumericString

This variable keeps the current password.

2.2.3.5 tmptimeout Duration, tmppassword NumericString, tmppassword2 NumericString,

These are the temporary variables used during changing of the timeout and the password.

2.2.3.6 security Integer

This is a Boolean variable that keeps the current security state.

2.2.3.7 seconpassword Integer, secoffpassword Integer, setpassword Integer, settimeout Integer;

These are the state variables that define whether or not were are changing the password or the timeout or trying to switch on or off the security. For details please refer to the corresponding TERMINAL process diagrams.

3 Testing

3.1 Semantic / Syntactic Analysis

After creating the SDL diagrams we analyzed the system for syntactic and semantic errors with the SDL Analyzer facility. This tool discovered quite a number of errors, such as case mismatches, missing definitions, duplicate definitions, incomplete diagrams (missing links) and so on. After all these errors have been corrected we got the following output.

+ Analysis started

Conversion of SDL, ASN.1 to PR started

Conversion to PR completed

Syntactic analysis started

Syntactic analysis completed

Semantic analysis started

Semantic analysis completed

+ Analysis completed

3.2 Bit-State Validation

To achieve the 100% symbol coverage we had to define the following signal parameters:

Command : List-Parameter-Test-Values

Signal Password, parameter 1:

'1234'

'4321'

'12'

'123456787890'

Signal NewTimeout, parameter 1:

500.0000

-200.0000

These values correspond to both correct and incorrect values (correct password, incorrect password, too long, too short etc.), thus every symbol can be reached. The log follows:

Command : Bit-State-Exploration

** Starting bit state exploration **

Search depth : 50

Hash table size : 100000 bytes

Transitions: 20000 States: 16670 Reports: 0 Depth: 49 Symbol coverage: 96.59 Time: Sat Dec 07 02:25:11 2002

Transitions: 40000 States: 32839 Reports: 0 Depth: 48 Symbol coverage: 100.00 Time: Sat Dec 07 02:25:11 2002

Transitions: 60000 States: 49016 Reports: 0 Depth: 47 Symbol coverage: 100.00 Time: Sat Dec 07 02:25:12 2002

…

** Bit state exploration statistics **

No of reports: 0.

Generated states: 1147970.

Truncated paths: 140839.

Unique system states: 545079.

Size of hash table: 800000 (100000 bytes)

No of bits set in hash table: 731468

Collision risk: 91 %

Max depth: 50

Current depth: -1

Min state size: 176

Max state size: 288

Symbol coverage : 100.00

3.3 MSC verification

We used two MSC diagrams presented above to verify the system against them.

One of them went successfully:

Command : Verify-MSC Z:\sdlproject\MSC2-SensorsLightOn.msc

MSC SensorsLightOn loaded.

Root of behaviour tree set to current system state

Reports cleared

Bit state exploration started.

** Bit state exploration statistics **

No of reports: 1.

Generated states: 13.

Truncated paths: 0.

Unique system states: 12.

Size of hash table: 800000 (100000 bytes)

No of bits set in hash table: 24

Collision risk: 0 %

Max depth: 12

Current depth: -1

Min state size: 272

Max state size: 384

Symbol coverage : 18.18

** MSC SensorsLightOn verified **

Current state is MSC verification state.

Command : Goto-Report 1

 *** Transition START

* PId : ROOM1:1

* State : Ready

* Input : Room1LightSwitch

* Sender : env

 * DECISION Value: false

 * ASSIGN manual := 0

 * OUTPUT of Room1Lights. Receiver: env

* Parameter(s) : 9

 * Signal Room1Lights received by env

 *** NEXTSTATE Ready

 MSC SensorsLightOn verified

However, the other one (the “thief” scenario) couldn’t be verified, because the verificator for some reason does not set the timer in the environment, and thus the “thief” comes immediately, before the security has been switched on, which is obviously not what was intended.

4 Feedback

· The practical assignment took about 40 man-hours to make

· The main difficulty we encountered was that some of the logic is quite tricky (changing passwords). Also, we couldn’t get the collision risk to zero, no matter what we tried.

· Difficulty level – medium to high.

· What could have been done better? It’d be nice to split Password signal into NewPassword, SecurityOnPassword, etc. – would simplify things a lot. Otherwise, the project was quite ok, no tricks or things that took an unreasonable amount of time.

· Overall, this course helped us a lot to understand how the communication software is being designed, developed and tested.

References

/1/
Tasker, Martin, Professional Symbian Programming, 2000, ISBN 1-861003-03-X

APPENDIX 1. ASN.1 File

MYDATATYPES

DEFINITIONS ::= BEGIN

DimType ::= INTEGER(0..9)

ReasonType ::= INTEGER {invalid(0), tooShort(1), tooLong(2)}

END

sensors

User of the service

Terminal

. . .

Police

station

