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Introduction

In this project a simple intelligent house control system is developed and described. This system controls the light in the house and defenses the home with a security feature. The project has studying purposes so the range of the functional possibilities of the system is quite narrow. The system consists of a set of sensors and a terminal. The sensors are set in each room and can control the lightning and detect movements (support security). There is a manual light-switching feature also. 

We used the Telelogic development environment to build the system. It can allow you to deal with such tasks as SDL diagram modeling, process modeling and many others. On the last step the Microsoft Validator and Simulator was used to finally trace our system and built the executable file.
1 Requirement Specification And Analysis

1.1 Textual Description of The System Behavior

The SmartHome system is purposed to control and operate with the electricity devices in a house. So the system is equipped with a set of sensors and has a terminal. The terminal is used to manually change the status of the security system and control the light in the rooms. In our project the system operate with three rooms, in each room can be installed an electronic device (such a device exists  - it’s a TV).

The system works in two states: light control and security guarding. The latter is used to protect a house against a burglary. In the guarding state the system needs a password to switch off the alarm. There are three attempts to enter correct password for user, otherwise the system sends an alarm signal to a nearest policy station. The alarm signal is used also in the case of housebreaking, when a sensor detects a movement in a room. 
All the processes that take place in the system are handled parallel to avoid the problems with security and response on the actions of the user. 

The system allows changing the password, even when the security system is turned on. Then the manual control feature exists, so the automatic system of light-switching can be disabled by simple pushing of a button in the room.

The AllOff feature is developed to ease the switching all of the devices in the flat include light and connected appliances (like TV).

The light is controlled both manually and with a timer. The default time is 600 seconds, but it can be changed for each room via terminal interface. The timer of security system is set to 60 seconds; in this period the alarm will start. 

The system seems to be very reliable and simple to implement.

1.2 System Components and Interaction

The interaction is presented with two parts – the human and the terminal. The terminal connected with the sensors with channels. There’s a special channel for the alarming, which is connected directly with the police stations. In our project we deal with the three sensors in three rooms. They send signals to the terminal when an action was detected (movement) or when just to control the light. 


Figure 1. the Top level scheme of the components

1.3 Use Cases

Please refer to the MSC comments for explanations.
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2 Design Specification

Please read the comments in the diagrams as they contain all the explanations.

2.1 SDL Diagrams

2.1.1 System Diagrams
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2.1.2 Block Diagrams
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2.1.3 Process Diagrams
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For Room processes

we use only one process diagram.
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values for the dim level and manual

light operation (by default, light is
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These three almost identical charts show how the TERMINAL repsonds to the movement sensors.

If we have security switched on, we tell the ROOM that it is on (so that it does not switch the lights

on) and set off the Alarm. If we had it off, we also tell this to the room (so that it can decide whether

to switch on the light or not), and start a timer, at the end of which (if there were no further

sensor messages) we switch off the lights (this action will be shown in one of the next diagrams).
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This is quite trivial - when someone wants to change the password, or

play with the security, we ask him for the password.
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This looks like a real mess, but we couldn't figure out  a way to make it simpler

(except splitting into subdiagrams). The reason for that is that when a user supplies

 a password to us, there is no way to distinguish from the signal alone, what was

the reason for it. So we have to keep, check and update lots of internal state variables.

Anyway, this diagram handles all the cases: switching on the security, switching off 

the security (with threee attempts before the alarm goes off), and changing the password

(the new password has to be supplied twice).
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Two trivial cases - cancelling

the action resets the internal state variables,

and switching everything off, well, does just that.
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The actions on timers timouts is quite

trivial - we switch off the light in the corresponding

room if there was no movement there for a certain

period of time and switch on the security 60 seconds

after the user has successfully supplied the password.


2.2 Message / Data Definition

The messages and parameters that the system uses to communicate with the environment were described in detail in the problem description, so it would make little sense to repeat (“copy-paste”) them here.

The description of the internal messages and variables follows.

2.2.1 Messages

2.2.1.1 Room1SensorOut, Room2SensorOut, Room3SensorOut

These messages are sent by each of the rooms to the TERMINAL to indicate that the movement sensor has been triggered. The TERMINAL uses that either to set off the Alarm if the security is on, or to reset and start a timer for the automatic switch-off of the lights in the corresponding room. The TERMINAL also sends the security state to the corresponding room immediately after receiving this signal.

2.2.1.2 Security1On, Security1Off, Security2On, Security2Off, Security3On, Security3Off.

The ROOMS expect to receive these signals immediately after they have sent the sensor signals to the terminal (see above). The use them to make a decision on whether or not the lights should be switched on.

2.2.2 ROOM1-3 internal variables 

2.2.2.1 DimLevel

This variable keeps the dim level for the room and is changed by the RoomNDim signal

2.2.2.2 Manual

This variable keeps the state of the light switch – if it is 1, the lights are off and can only be switched on by pressing the switch (RoomNLightSwitch). If it is 0,  the lights can be both on and off and are controlled by the movement sensor.

2.2.3 TERMINAL internal variables.

2.2.3.1 timer Light1Delay, timer Light2Delay,timer Light3Delay

These timers are used to delay the switching off the lights by a certain period of time (defined by the timeout variable).

2.2.3.2 timer SecurityDelay

This timer is used to postpone the switching on of the security facilities by one minute.

2.2.3.3 timeout Duration

This variable keeps the amount of time before switching off the lights after no movement has been detected for this amount of time.

2.2.3.4 password NumericString

This variable keeps the current password.

2.2.3.5 tmptimeout Duration, tmppassword NumericString, tmppassword2 NumericString,

These are the temporary variables used during changing of the timeout and the password.

2.2.3.6 security Integer

This is a Boolean variable that keeps the current security state.

2.2.3.7 seconpassword Integer, secoffpassword Integer, setpassword Integer, settimeout Integer;

These are the state variables that define whether or not were are changing the password or the timeout or trying to switch on or off the security. For details please refer to the corresponding TERMINAL process diagrams.

3 Testing

3.1 Semantic / Syntactic Analysis

After creating the SDL diagrams we analyzed the system for syntactic and semantic errors with the SDL Analyzer facility. This tool discovered quite a number of errors, such as case mismatches, missing definitions, duplicate definitions, incomplete diagrams (missing links) and so on. After all these errors have been corrected we got the following output.

+ Analysis started

Conversion of SDL, ASN.1 to PR started

Conversion to PR completed

Syntactic analysis started

Syntactic analysis completed

Semantic analysis started

Semantic analysis completed

+ Analysis completed

3.2 Bit-State Validation

To achieve the 100% symbol coverage we had to define the following signal parameters:

Command : List-Parameter-Test-Values

Signal Password, parameter 1:

'1234'

'4321'

'12'

'123456787890'

Signal NewTimeout, parameter 1:

500.0000

-200.0000

These values correspond to both correct and incorrect values (correct password, incorrect password, too long, too short etc.), thus every symbol can be reached. The log follows:

Command : Bit-State-Exploration

** Starting bit state exploration **

Search depth    : 50

Hash table size : 100000 bytes

Transitions: 20000 States: 16670 Reports: 0 Depth: 49 Symbol coverage:  96.59 Time: Sat Dec 07 02:25:11 2002

Transitions: 40000 States: 32839 Reports: 0 Depth: 48 Symbol coverage: 100.00 Time: Sat Dec 07 02:25:11 2002

Transitions: 60000 States: 49016 Reports: 0 Depth: 47 Symbol coverage: 100.00 Time: Sat Dec 07 02:25:12 2002

…

** Bit state exploration statistics **

No of reports: 0.

Generated states: 1147970.

Truncated paths: 140839.

Unique system states: 545079.

Size of hash table: 800000 (100000 bytes)

No of bits set in hash table: 731468

Collision risk: 91 %

Max depth: 50

Current depth: -1

Min state size: 176

Max state size: 288

Symbol coverage : 100.00

3.3 MSC verification

We used two MSC diagrams presented above to verify the system against them.

One of them went successfully:

Command :   Verify-MSC Z:\sdlproject\MSC2-SensorsLightOn.msc

MSC SensorsLightOn loaded.

Root of behaviour tree set to current system state

Reports cleared

Bit state exploration started.

** Bit state exploration statistics **

No of reports: 1.

Generated states: 13.

Truncated paths: 0.

Unique system states: 12.

Size of hash table: 800000 (100000 bytes)

No of bits set in hash table: 24

Collision risk: 0 %

Max depth: 12

Current depth: -1

Min state size: 272

Max state size: 384

Symbol coverage :  18.18

** MSC SensorsLightOn verified **

Current state is MSC verification state.

Command : Goto-Report 1 

 *** Transition START

*     PId    : ROOM1:1

*     State  : Ready 

*     Input  : Room1LightSwitch

*     Sender : env

 *   DECISION  Value: false

 *   ASSIGN  manual := 0

 *   OUTPUT of Room1Lights. Receiver: env

*     Parameter(s) : 9

 *     Signal Room1Lights received by env

 *** NEXTSTATE  Ready

 MSC SensorsLightOn verified

However, the other one (the “thief” scenario) couldn’t be verified, because the verificator for some reason does not set the timer in the environment, and thus the “thief” comes immediately, before the security has been switched on, which is obviously not what was intended. 

4 Feedback

· The practical assignment took about 40 man-hours to make

· The main difficulty we encountered was that some of the logic is quite tricky (changing passwords). Also, we couldn’t get the collision risk to zero, no matter what we tried.

· Difficulty level – medium to high.

· What could have been done better? It’d be nice to split Password signal into NewPassword, SecurityOnPassword, etc. – would simplify things a lot. Otherwise, the project was quite ok, no tricks or things that took an unreasonable amount of time.

· Overall, this course helped us a lot to understand how the communication software is being designed, developed and tested.
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APPENDIX 1. ASN.1 File

MYDATATYPES

DEFINITIONS ::= BEGIN

DimType ::= INTEGER(0..9)

ReasonType ::= INTEGER {invalid(0), tooShort(1), tooLong(2)}

END
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